
• • • •• ••• • •••• • ••••••••••••••••••••••••• ••••• • • •• • •• • ••• •••••••••••••••••••• •••• •••••••••••• •••• •••• • • ••• • • • • • • • • • • • • • •• ••• • •• •••••••••••••• ••• ••••• • • • • • • • • • • • • •••••• •• • • •• •••• • • • • •• •••• •• • • • • ••••• • • ••• • • • • • • •• ••• • •• •

• •• • • • • ••• •• • • • • • ••• • ••• • ••• • •• • ••• •

• •••• •• • • • • • • ••••• • • • • ••••••••••• •• • • • • • • • • •

• •• • • •• •• •• • • • • • • •

• •

• • • • • • • • • •

• • • •

• •• • •• • •••••••••••••

• • • • •• • • • • • ••••• • •• • •• • •••••••••••••••• • • ••••• •••• • • ••• • • • • • • • • • • • • •• ••• • •• •••••••••• •• ••• •• • • • • • • • •• •• •• • •• • ••• • •• •••••••••••••••••••• •• •••••• • •• ••••••• •• • ••••••••••

• • • •• •••••••• • ••••• • • •• • ••• • • • • • • • • • • • • • • • • • • •• •• • ••• • • • • • • • • •••• ••• • •• •• •••••• •• • ••••••

• •••• • • •• •••••• • •• •• ••••• •• • • • • • •• •••••• •• •••••••• ••• • •• •• •••••• •• • ••••••

• ••• ••• •• • • • • • • • • • • • • • • • • • • •

• • • • ••••••••••• •••••••• • • •

• • • • • •••• • • • •• • • • • • • • •• •• • • • • • • •••••••• •• • • • • • • •••• •• • • •• •• •• • • • • • • •••••••

• • • •• • • • •• • • • • • • • • • • • •

• ••• • ••• • •• • • • • • • • • • • •

• • •• • • • •• ••••••• •• ••• • • • • • • • • •• •• • • •• • • • • • • •

• • • •••• • • • •• • • • • • • • •• •• • • • • • • •••••••• • • • • •••• •• • • •• •• •• • • • • • • •••••••

• • • •• • • • •• • • • • • • • • • • • •

• •••• • • • • •• • ••••• • ••••••••• ••• • • • •• •• • ••• •••• • • • • • • • • • • •• • • •• •• • • •• ••• • •• • • • • • • •• • • • •• • • • • • •• •••• ••• ••• •• • • • • • • • • • • • • • • • • • • ••• • •• • •• • •••••••••••• • •• • • • •••••••••

A Pascal processor validation suite

B. A. WICHMANN∗ and A. H. J. SALE†

March 1980, NPL Report CSU 7

Abstract

The report is the documentation accompanying a series of test pro-

grams written in Pascal. The suite of programs may be used to validate a

Pascal processor by presenting it with a series of programs which it should,

or should not, accept. The suite also contains a number of programs that

explore implementation-defined features and the quality of the processor.

The tests are generally based on the draft ISO Standard for Pascal.

This is a working document. It is being continually revised and ex-

tended. Comments, corrections, extra tests, and results of running any

tests would be most welcome.

This is version 2.3, an earlier edition was issued as a report from the

University of Tasmania.

1 INTRODUCTION AND PURPOSE

This paper describes a suite of test programs which has been designed to support
the draft Standard [1, 3] for the programming language Pascal (Jensen & Wirth,
1975) prepared for approval by ISO1. It therefore follows similar work done by
AFSC for COBOL[2], and Wichmann for Algol 60 [7, 5, 8].

The suite of programs is called a validation suite for Pascal processors; how-
ever it is important to emphasize that no amount of testing can assure that
a processor that passes all tests is error-free. Inherent in each test are some
assumptions about possible processors and their designs; a processor which vi-
olates an assumption may apparently pass the test without doing so in reality.
Also, some violations may simply not be tested because they never occurred to
the validation suite designers, nor were generated from the draft Standard.

Two examples may illustrate this as a warning to users against expecting
too much. Firstly, consider a fully interpretive Pascal processor. It may pass a
test which contains a declaration which it would mis-handle otherwise, simply
because the program did not include an access to the object concerned so that
it was never interpreted. A second example might be a Pascal processor which
employs a transformation of the Pascal syntax rules. Since the pathological
cases incorporated into the test programs are based on the original rules, a
mistake in transformation may not be detected by the test programs.

∗Computing Services Unit, NPL
†Department of Information Science University of Tasmania, GPO Box 252C, HOBART,

Tasmania 7001
1In the rest of this paper, the draft Standard is simply referred to as the Standard.

1

On the other hand, the test series contains a large number of test cases
which exercise a Pascal processor fairly thoroughly. Hence passing the tests is a
strong indication that the processor is well-designed and unlikely to give trouble
in use. The validation suite may therefore be of interest to two main groups:
implementors of Pascal, and users of Pascal.

Implementors of Pascal may use the test series to assist them in producing
an error-free processor. The large number of tests, and their independent origin,
will assist in detecting many probable implementation errors. The series may
also be of use for re-validating a processor after incorporating a new feature, or
correcting an error.

Users of Pascal, which includes actual programming users, users of Pascal-
written software, prospective purchasers of Pascal processors, and many others,
will also be interested in the validation suite. For them it will provide an
opportunity to measure the quality of an implementation, and to bring pressure
on implementors to provide a correct implementation of Standard Pascal. In
turn, this will improve the portability of Pascal programs. To emphasize this
role, the validation suite also contains some programs which explore features
which are permitted to be implementation defined, and some tests which seek
to make quality judgements on the processor. The validation suite is therefore
an important weapon for users to influence suppliers.

Naturally, implementors of Pascal are best placed to understand why a pro-
cessor fails a particular test, and how to remedy the fault. However, the users’
view of a Pascal processor is mainly at the Pascal language level, and the fact
of a failure is sufficient for the users’ purpose.

2 THE TEST PROGRAM STRUCTURE

Each test program follows a consistent structure to aid users of the suite in
handling them. Most of the following rules apply to all programs: a few hold
everywhere except in a few test cases meant to test the particular feature in-
volved. Such rules are marked by an asterisk and a following note points out
the exceptions.

• Each program starts with a header comment, whose structure is given
later.

• The header comment is always immediately followed by an explanatory
comment in plain English, which describes the test to be carried out and
its probable results.

• Each program closes with the characters “end.” in the first four character
positions of a line. This pattern does not otherwise occur in the program
text.

• All program lines are limited to 72 character positions.

• * The lexical tokens conform with the conventions set out in the draft ISO
standard. Thus comments are enclosed in curly brackets, the not-equal
token is “<>”, etc. In addition, all program text is in lower case letters,
with mixed-case used in comments in accordance with normal English
usage. String- and character-constants are always given in upper-case

2

letters. (Note: A few tests set out to check lexical handling, and may
violate these rules. Translation of mixed cases to one case will therefore
make these tests irrelevant, but will have no other effect.)

• Direct textual replacement of any lexical token, or the comment markers
with the approved equivalents given in the Standard, will not cause the
significant text on a program line to exceed 72 characters.

• * The program writes to the default file output, which is therefore declared
in the program heading. (Note: some tests do no printing including the
minimal program and others which serve purely as a cross reference).

2.1 The header comment

The header comment always begins with the characters “TEST” in positions 1-5
of a line. No other comments are permitted to have the character “{” and “T”
directly juxtaposed in this way. The syntax of a header comment in Extended
Backus Naur Form [4] is given by:

header-comment = "{TEST" program-number "," "CLASS=" category-name "}" .

program-number = number {"." number} "-" number .

number = digit {digit} .

category-name = "CONFORMANCE" | "DEVIANCE" | "IMPLEMENTATIONDEFINED" |

"ERRORHANDLING" | "QUALITY" | "EXTENSION" .

For example, a possible header comment is:

{TEST 6.5.3-10, CLASS=CONFORMANCE}

The program number identifies a section in the standard which gives rise
to the test, and a serial number following the dash to uniquely identify each
test within that section. If other sections of the Standard are relevant, the
explanatory comment will mention them. The program title is constructed
from the section number by replacing “TEST” by “t”, “.” by “p” for point, and
“-” by “d” for dash. Thus the above header comment belongs to a program
t6p5p3d10. This technique may also be used to make the program source test
file in processing.

The category-name identifies a class into which this test falls. The function
and design of each test depends on its class. These are explained later. Thus
it is possible to read through the validation suite file and simply identify the
header comment by the leading “T” in the first two character positions, identify
its section relevance and construct a unique identifier for each program, and to
select programs of particular classes.

3

2.2 The program classes

2.2.1 Class = CONFORMANCE

The simplest category to explain is CLASS=CONFORMANCE. These pro-
grams are always correct standard Pascal, and should compile and execute.
With one exception (the minimal program), the program should print “PASS”
and the test number if the program behaves as expected. In some cases an
erroneous interpretation causes the program to print “FAIL”; in other cases it
may fail before doing this (in execution, loading or compilation). Conformance
tests are derived directly from the requirements of the Standard, and attempt to
ensure that processors do indeed provide the features that the Standard says are
part of Pascal, and that they behave as defined. Since conforming programs ex-
ecute to completion, typical conformance tests will include a number of related
features; all will be exercised by processors that pass.

2.2.2 Class = DEVIANCE

The next simplest category to explain is CLASS=DEVIANCE. These programs
are never standard Pascal, but differ from it in some subtle way. They serve to
detect processors that meet one or more of the following criteria:

• the processor handles an extension of Pascal,

• the processor fails to check or limit some Pascal feature appropriately, or

• the processor incorporates some common error.

Ideally, a processor should report clearly on all deviance tests that they are
extensions, or programming errors. This report should be at compile-time if
possible, or in some cases in execution. A processor does not conform to the
standard if it executes to completion. In such cases the program will print
a message beginning “DEVIATES”, and users of the tests must distinguish
between extensions and errors. (In a few cases a possible extension is tested
also for consistency under this class.)

It is obviously not possible to test all possible errors or extensions. The
deviance tests are therefore generated from some assumptions about implemen-
tation (which may differ from test to test), and from experience with previous
incorrect compilers. No attempt is made to detect extensions based on new
statement types or procedures, but attention is concentrated on more stable
areas. Obviously since each deviance test is oriented to one feature, they tend
to be shorter than conformance tests, and to generate a short series where one
conformance test collects several examples.

2.2.3 Class = IMPLEMENTATIONDEFINED

In some sections of the Standard, implementors are permitted to exercise some
freedom in implementing a feature. An example is the significance limit of iden-
tifiers; another is the evaluation order of boolean expressions. The CLASS =
IMPLEMENTATIONDEFINED tests are designed to report on the handling of
such features. A processor may fail these tests by not handling them correctly,
but generally should execute and print some message detailing the implementa-
tion dependency. The collection of such implementation dependencies is useful

4

to the writers of portable software. Some tests in this category require care
in interpretation, as the messages generated by the test program rely on some
assumptions about the processor implementation. The programs may or may
not be standard Pascal: often they are not.

For example, one program attempts to measure the significance limits of
identifiers by declaring a series of differing length in an inner procedure that are
different from an outer series by their last letter. Thus it violates the require-
ment for uniqueness over the first eight characters and relies on masquerading
redefinition under the scope rules for its effect. One processor, however, reports
that just this is happening during compilation. Though this is ideal behaviour,
it would destroy the test if the program then was not permitted to run. (In this
case, in fact, the messages were only warnings.)

2.2.4 Class = ERRORHANDLING

The Standard specifies a number of situations by stating that an error occurs if

the situation occurs. The tests of this class each evoke one (and only one) such
error. They are therefore not in Standard Pascal with respect to this feature,
but otherwise conform.

A correct processor will detect each error, most probably as it occurs during
execution but possibly at an earlier time, and would give some explicit indication
of the error to the user. Processors that fail to detect the error will exhibit some
undefined behaviour: the tests enable these cases to be identified, and allows
for documentation of the handling of detected errors.

2.2.5 Class = QUALITY

These tests are a miscellany of test programs which have as their only common
feature that they explore in some sense the quality of an implementation, for
example:

• tests that can be timed, or used to estimate the performance.

• tests that have known syntax errors which can be used to inspect the
diagnostics.

• tests that establish whether the implementation has a limit which is a
virtual infinity in some list or recursive production. For example a deep
nesting of for-loops (but not unreasonable!) would see whether there was
any limit, perhaps due to a shortage of registers on a computer.

2.2.6 Class = EXTENSION

These are specific to some conventionalized extension approved by the Pascal
Users Group, such as the provision of an otherwise clause in case statements.
In this case, the class in the header comment is followed by a sub-class, as in
the example:

{TEST 6.8.1-1, CLASS=EXTENSION, SUBCLASS=CONFORMANCE}

The subclass gives the purpose of the test according to the previously ex-
plained classes.

5

2.2.7 Class = DUBIOUS

The definition of a standard is envitably incomplete. Sometimes, such as with
the definition of floating point, such incompleteness is deliberate while in other
cases it is clearly accidental. Programs whose interpretation is in doubt are
therefore added to this class. One hpoes that the current revision of the draft
BSI Standard by ISO will resolve the ambiguities in many of these programs.

3 STRUCTURE OF THE VALIDATION SUITE

The validation suite as distributed consists of:

A. Machine-readable files

1. A header file containing the character set and an explanation of the
structure of the other files.

2. A skeleton program, written in Pascal, to operate on the previous
file.

3. A copy of this report.

4. A file consisting of the sequence of test programs arranged in lexico-
graphic order of their program-number (see section 2.1)

B. Printed materials

1. This document.

2. A printed version of A.1.

The skeleton program as supplied prints the test programs on the output
file, but calls a procedure newprogram before listing the start of a program, and
calls a procedure endprogram after printing the last end of a program. These
procedures as now supplied simply print a heading and a separator respectively.
However, users of the suite may write versions of newprogram and endprogram
that may write programs to different named files, and which may initiate jobs
in the operating system queues to carry out the tests. The two procedures
newsuite and endsuite are also provided in case these are of use.

Since newprogram may return a status result, it may also be programmed
to be selective in its handling of tests. Only conformance tests may be selected,
or only tests in section 6.3, as required.

The skeleton program is in standard Pascal, and conforms to the conventions
of the validation suite (but has no header comment). It is documented in an
Appendix.

4 REPORTING THE RESULTS

The results of a pass of the validation suite against a Pascal processor should
be reported in a standard way, illustrated by the schema below.

6

PASCAL PROCESSOR IDENTIFICATION

MACHINE:

COMPILER:

TEST CONDITIONS

DATE:

TESTS BY:

TEST VERSION:

REPORTED BY:

CONFORMANCE TESTS

Number of tests passed = ?

Number of tests failed = ?

details of failed tests:

TEST ???? : explanation of why or what

.....

DEVIANCE TESTS

Number of deviations correctly detected = ?

Number of tests showing true extensions = ?

Number of tests not detecting erroneous deviations = ?

Details of extensions:

.....

Details of deviations:

.....

ERROR-HANDLING

Number of errors correctly detected = ?

Number of errors not detected = ?

Details of errors not detected:

.....

IMPLEMENTATION-DEPENDENCE

Number of tests run = ?

Number of tests incorrectly handled = ?

Details of implementation-dependence:

.....

QUALITY MEASUREMENT

Number of tests run = ?

Number of tests incorrectly handled = ?

Results of tests:

7

.....

EXTENSIONS

Extensions present = ?

4.1 PDP11 results

PASCAL PROCESSOR IDENTIFICATION

MACHINE: DEC PDP-11 running RSTS V06C-03

COMPILER: OMSI Pascal-1 (Field Test Version X1.2)

TEST CONDITIONS

DATE: 9 and 1Oth September 1979.

TESTS BY: Barry Smith, Oregon Software

(Implementation/maintenance team)

TEST VERSION: 2.1

REPORTED BY: A H J Sale (13th September 1979)

CONFORMANCE TESTS

Number of tests attempted = 137

Number of tests passed = 122

Number of tests failed = 15 (13 causes)

Invalid tests discovered = 2

6.1.8-3 Comment delimiters are not required to be pairwise

matching; this makes { This part of the scanner looks

for a *) delimiter} a disallowed comment.

6.2.2-3 Pointer scope is not handled correctly, so that

programs fail to compile.

6.2.2-8 Assignment to function-identifier from within

nested function generates bad code.

6.4.3.3-1 Empty record types with semicolons and empty case

variants are not permitted.

6.4.3.5-2 and -3. An unknown interaction between RSTS I/O

on temporary files and the implementation of the

run-time support.

6.4.5-9 Equal compatible sets of different basetypes do not

compare equal. (Pascal-1 scales the basetype to force a

representation of bit 0 on the lowerbound, giving errors

in comparisons as shifts are not inserted to

compensate. Also set of char is implemented as set of

’ ’ .. ’-’ (64 chars).)

6.6.3.1-5 and 6.6.3.4-2. Only Jensen and Wirth procedural

parameters allowed, not the BSI version. The second test

is relevant to the feature actually implemented, but has

not been run with modifications.

8

6.6.5.2-3 Does not check eof on an empty temporary file.

6.6.5.4-1 Pack and unpack not implemented.

6.8.2.1-1 Empty field specifications not allowed in record

declarations.

6.9-1 Eoln and eof not correct: relation between RSTS and

implementation causes unknown fault.

6.9.2-3 Conversions on reading real numbers are not

identical to the conversions performed by the compiler.

6.9.4-7 Writing boolean values is incorrectly

right-justified. (Sale comments that the new draft may

change this or tighten up wording.)

DEVIANCE TESTS

Number of test attempted = 95

Number of tests showing true extensions = 43 (25 cases)

Number of tests not detecting erroneous deviations = 52

Number of claimed extensions = 2 (as stated by B Smith)

6.1.5-4 Allows real number constants without digits after

point.

6.1.7-5 and 6.9.4-12. Packed is ignored so that packed

array of char is identical to array of char, and

similarly with other structures.

6.1.7-6 and -7. The requirements to be a string-type are

not checked, allowing deviant programs to execute.

6.1. 7-8 The requirements to be a string-type are not

checked, together with an obvious error, allows

erroneous values to be given to a type.

6.1.7-11 Allows empty string: ie " is equivalent to packed

array[1..0] of char.

6.2.2-4 Incorrect scope allows incorrect program to

compile.

6.2.2-7 Invalid program executes with (a) function whose

identifier is inaccessible and (b) another function has

an attempted assignment outside its block.

6.2.2-9 A function-identifier may be assigned to outside

its block.

6.3-2, -3, -4, -5, 6.7.2.2-9. Signed characters, strings

and enumerated types are allowed.

9

6.4.3.1-1 Allows packed scalars, subranges, ie not

restricted to structures.

6.4.3.1-2 Allows "packed" type-identifier.

6.4.3.2-5 String types are allowed to have non-integer

subrange indextypes.

6.4.3.4-3 Set of real erroneously not detected.

6.4.5-2 Var parameters which are compatible but not

identical are allowed.

6.4.5-3 and -13. Non-identical array types allowed as var

parameters.

6.4.5-5 Non-identical pointer types allowed as var

parameters.

6.4.6-10, -11 and -12. Compiles file assignment as

descriptor copy, and similarly for records containing

file components.

6.6.2-5 Allows function definitions without any assignment

to function-identifier.

6.8.2.4-2, -3 and -4. Allows goto statement to transfer

into structured statement components.

6.8.3.9-2, -3, -4 and -16. Any assignment to a

for-control-variable is allowed inside the controlled

statement, and it in fact changes the value.

6.8.3.9-19. Two loops using same variable interact to

produce infinite loop construction, or other

insecurities.

6.8.3.9-9, -13 and -14. Allows a for-control-variable to be

program-global, non-local, and other insecurities.

6.10-1 Ignore program parameters, allowing use of external

file not stated.

6.10-3 The files input and output are not implicitly

declared at the program level, but at a lexically

enclosing level.

6.10-4 The entire program heading, including the reserved

word program, may be omitted.

ERROR-HANDLING

Number of tests attempted = 48

10

Number of errors correctly detected = 11 (9 causes)

Number of errors not detected = 2

Tests failed

6.4.3.3-12 Crash at run-time due to empty record-field.

6.6.5.2-2 Relation between RSTS I/O and implementation

run-time support.

Tests passed and errors detected

6.4.6-6, 6.6.3.2-1 Assignment compatibility: indextype vs

subscript value.

6.6.5.2-1 Put not allowed if eof false.

6.6.6.2-4 ln(O.0) or ln(negative).

6.6.6.2-5 sqrt(negative), but continues execution.

6.6.6.2-2 trunc(largereal)

6.6.6.2-3 round(largereal)

6.7.2.2-3, -8 Div and mod by O, but continues execution.

6.9.2-4 Read of textfile, but chars do not represent

integer value.

6.~.2-5 Read of textfile, but chars do not represent real

value.

Errors not detected

Use of undefined value.

Variant undefinition.

All assignment compatibility except indextype in arrays.

Nil or undefined pointer deferencing.

Undefined function result.

Fill buffer aliasing and use of file.

Dispose of nil or undefined pointer value.

Dispose of variable currently var parameter or with

aliased.

Dynamic variant record used in expression or assignment.

11

Succ or pred of limiting value in type.

Chr of very large integer.

Overflow of integer type.

Assignment compatibility with overlapping sets.

Case expression with no matching label (falls through).

Use of for-control-variable after loop termination.

nested loops using same control-variable.

IMPLEMENTATION-DEPENDENCE

Number of tests run = ?

Number of tests incorrectly handled = ?

Maxint = 32767.

Set of char not implemented, but taken as equivalent to set

of ’ ’ .. ’ ’.

set limits are O .. 63.

Standard functions not allowed as functional parameters.

Real representation has 24-bit mantissa, rounds on

arithmetic, eps=5.96e-8; xmin = 2.9e-39; xmax = 1.70e38.

Full evaluation of boolean expressions.

Selection then evaluation in a[i] := exp.

Evaluation then referencing in p^ := exp.

Writes two exponent digits in real numbers.

Default widths: integer 7, boolean 5, real 13.

Rewrite permitted on output.

Both comment delimiters allowed, no others.

QUALITY TESTS

Number of tests run = 24

Number of tests incorrectly handled = 3

Tests failed

6.2.1-9 Compiler loops when presented with program with 50

labels.

12

6.6.6.2-9 Compiler refuses to compile a real expression in

sin/cos test due to "lack of registers".

6.8.3.9-20 Compiler crashes after compiling 11 nested

for-loops.

Quality measurements

5.2.2-1 and 6.1.3-3. Any length identifiers allowed:

disallow all mis-spellings.

6.1.1-4 Allowable number of types >=50.

6.4.3.2-4 Array[integer] diagnosed but message not good.

6.4.3.3-9 Record fields allocated representation space in

declared order.

6.4.3.4-5 Warshall’s algorithm timing/space test not yet

run.

6.5.1-2 Allowable number of variable declarations >=100.

6.6.1-7 Allowable number of nested procedures must be <=10.

6.6.6.2-6, -7, -8 and -9. Quality tests on sqrt, arctan,

exp and ln carried out. Some minor inconsistencies.

6.7.2.2-4 Mod inconsistently implemented for negative

operands.

6.8.3.5-2 No warnings for impossible case clauses.

6.8.3.5-8 Allowable number of case-constants >=256.

6.5.3.9-18 Undefined (out-of-range) values of case

expressions are possible and are undetected but do no

violent damage.

6.8.3.10-7 Allowable number of nested with-statements must

be <=3.

6.9. 4-11 Recursive I/O allowed on some file, and still

works.

EXTENSIONS

Claimed extensions

6.7.2.3-4 And, or and not are overloaded to be

representation-dependent set of operators on integer

type.

13

6.9.4-9 Negative field widths in writes of integer produces

octal interpretation in field of abs(width).

5 ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of many colleagues who have
collected difficult cases and bugs in their compilers and have passed them on for
inspirational purposes. Many of the tests have been derived from work of B.A.
Wichmann [7] and A.H.J. Sale [6] and significant contributions have also been
made by A.M. Addyman and R.D. Tennent. N. Saville and R. Freak contributed
greatly by bringing consistency and care into the large effort required to assemble
the validation suite itself.

The present level of the suite would not have been possible without the
work of BSI DPS/13/4 in drawing up the draft ISO Standard, nor without the
support of the Pascal Users Group.

References

[1] Addyman, A.M. (1979): BSI/ISO Working Draft of Standard Pascal by the
BSI DPS/13/4 Working Group, Pascal News No 14, January 1979, pp4-54
and Software - Practice and Experience, Vol 9 pp381-424.

[2] AFSC (1970): User’s Manual, COBOL Compiler Validation System, Han-
com Field, Mass., 2970.

[3] British Standards Institute(BSI, 1979a), Draft Standard Specification for
the computer programming language Pascal. Document 79/60528 DC,
March 1979, also issued as a draft ISO Standard. (The technical content of
this is the same as Addyman 1979, but the section numbers differ. Version
2.1 of the kit used Addyman, but 2.2 uses the standard numbering.)

[4] British Standards Institute(BSI, 1979b), Draft Standard Syntactic Meta-
language. Document 79/64467 DC, November 1979.

[5] DeMorgan, R.M., Hill, I.D., Wichmann, B.A. (1977): Modified Report on
the Algorithmic Language ALGOL 60, Comp. J. Vol 19 No 4. pp364-379.
1977

[6] Sale, A.H.J. (1978): Pascal Compatibility Report (revision 2), Department
of Information Science Report r78-3, University of Tasmania, May 1978.
obsoleted by this document

[7] Wichmann, B.A. (1973): Some Validation tests for an Algol compiler, NPL
Report NAC 33, March 1973.

[8] Wichmann, B.A. & Jones, B. (1976): Testing ALGOL 60 Compilers, Soft-
ware - Practice and Experience, Vol 6 pp261-270. 1976.

A Document details, Not published

Appendix to CSU7 not included in this transciption. Scanned and converted to
LATEX, January 2000.

14

A.1 Historical note

The general strategy worked well, with strong support by BSI who launched
a commercial service. However, neither the UK Government nor Europe pro-
vided any encouragement for the service. In consequence, the service depended
entirely on the requirements for validation by the US for Federal procurement.

Technically, some changes were made to the suite, but these were mainly
cosmetic. NIST objected to the quality tests — the solution being to retain
them, but not require that they be passed for successful validation. Commer-
cially, since the validation reports were published, the companies ensured they
were passed.

The Pascal standard suffered from lack of support in the US due to the
controversy about conformant arrays (optional in the standard). Without this
facility, the language does not have the functionality of Fortran and hence lacked
credibility.

The design of the PVS was vindicated by the Ada suite, which copied it. The
Ada suite was heavily backed by the US Government and the Defence industry
and in consequence, was more successful. (NPL contributed a small part of the
Ada suite under a contract.) The Modula-2 validation suite was a straight copy
of the PVS, but died with the lack of interest in the language.

The Plum-Hall C validation suite has a slightly different design, reflecting
that the language is designed round subroutines, rather than programs. NPL
added tests for the new mathematical functions which were standardized re-
cently.

15

